Edge Computing

Anveshak: A Platform for Distributed Video Analytics

Aakash Khochare

Motivation

The push for smarter and safer cities has led to the proliferation of video cameras in public spaces. Regions like London, New York, Singapore and China, have deployed camera-networks with 1000’s of feeds to help with urban safety, e.g., to detect abandoned objects, track miscreants, and for behavioral analysis. They are also used for citizen services, e.g., to identify open parking spots or count the traffic flow. Such many-camera networks, when coupled with sophisticated Computer Vision (CV) algorithms and Deep Learning (DL) models, can also serve as meta-sensors to replace other physical sensors for IoT applications and to complement on-board cameras for self-driving cars.

One canonical application domain to consume such ubiquitous video feeds is called tracking, where suspicious activities in public spaces need to be detected and followed by law enforcement to ensure safety. Here, the goal is to identify a target (e.g., a vehicle or a person of interest), based on a given sample image or feature vector, in video streams arriving from cameras distributed across the city, and to track that target’s movements across the many-camera network. Contemporary many-camera surveillance platforms are monolithic, proprietary and bespoke. They also lack tunable adaptivity and scaling.

Contributions

Anveshak is a framework designed to address the shortcomings of existing surveillance platforms. We propose a novel domain-specific dataflow model with functional operators to plug-in different analytics, for current and emerging tracking applications. We design domain-sensitive heuristics for frame drops and batching, which enable users to tune accuracy, latency and scalability under dynamism. We implement the dataflow model and heuristics in our Anveshak platform to execute across distributed resources. We scale Anveshak to track users across a 1000 camera network using 10; 8 core 32 GB Virtual Machines, which is a 25x improvement over the baseline approach

Software

  • TBD

Publications

  • Khochare A., and Simmhan S. “A scalable and composable analytics platform for distributed wide-area tracking.” PhD Forum, 20th International Conference on Distributed Computing and Networking. ACM, 2019.
  • Khochare A., and Simmhan Y. “A Scalable Framework for Distributed Object Tracking across a Many-camera Network.” arXiv preprint arXiv:1902.05577 (2019).
  • Khochare A., Sheshadri K., Shriram R., and Simmhan Y. “Dynamic Scaling of Video Analytics for Wide-area Tracking in Urban Spaces.” To appear in 12th International SCALE Challenge 2019.

Resilient Storage on Distributed Edge Resources

Sheshadri KR and Sumit Monga

Motivation

<>

Contributions

<>

Software

  • TBD

Publications

  • ElfStore: A Resilient Data Storage Service for Federated Edge and Fog Resources, Monga, S. K., Sheshadri K, R and Simmhan, Y., IEEE International Conference on Web Services (ICWS), 2019, pp. 1-9 (To Appear)

CoFEE: Distributed Orchestration over Edge, Fog and Cloud Resources

Prateeksha Varshney, Shayal Chhabra and Shriram R

Motivation

The Internet of Things (IoT) has manifested in large scale deployment of sensors, actuators and computing devices at the edge of the network. These are complemented by Fog resources that offer federated infrastructure management and accelerated computing power. Analytics over the streams of data from the Edge devices lead to efficient transportation and utility management, healthcare and safety. These applications tend to be declarative and latency-sensitive.

There is a potential opportunity to leverage the availability of Edge and Fog computing resources that can supplement Cloud resources to perform cheaper and low latency analytics. The key challenge is that the Edge resources are prone to failures due to network, mobility or limited power capacity. Also, each resource have different computational constraints and associated costs. This motivates the need for reliable and efficient strategies for computation on Edge and Fog resources.

Contributions

CoFEE stands for “A Scheduler for Cloud, Fog and Edge Execution”. In this work, we have proposed a novel declarative trigger-based dataflow execution model over data streams from wide-area sensor sources. A scalable runtime engine for resilient distributed execution of these dataflows on unreliable Edge, reliable Fog and Cloud resources has been developed which guarantees runtime strategies that could meet stringent deadlines for the dataflows. The engine also attempts to minimize the monetary cost for resources and can tolerate Edge device failures.

CoFEE uses a hierarchical model of Edge, Fog and Cloud resources for easier manageability. It performs just in time task placements on the resources chosen by our novel scheduling algorithm. We have also proposed several indexing strategies to efficiently locate the available data on the network. We have performed detailed experiments to demonstrate the scalability, resilience and lower costs of CoFEE relative to other baseline scheduling strategies.

Publications

  • Under review